EN
当前位置: 首页 > 学术成果 > 学术论文 > 正文

Significant transitions of microstructure and mechanical properties in additively manufactured Al-Co-Cr-Fe-Ni high-entropy alloy under heat treatment

发表时间:2023年07月10日

Volume 815, 20 May 2021, 141257

Qingkai Shen, Xiangdong Kong, Xizhang Chen

Abstract

The non-equimolar Al–Co–Cr–Fe–Ni high-entropy alloy was fabricated by combined cable wire arc additive manufacturing (CCW-AAM). Microstructure evolution and mechanical properties of this dual-phase (FCC + ordered BCC (B2)) alloy under 600 °C, 800 °C and 1000 °C heat treatment for 8 h were investigated. The as-deposited alloy was composed of FeCr-rich FCC phase and AlNi-rich B2 phase. Under heat treatment at 600 °C, a large number of Cr-rich σ phases precipitated in the B2 matrix and nano-sized ordered FCC (L12) precipitated in the FCC matrix, which improved the hardness (from 338 HV to 420 HV), yield strength (from 654 MPa to 810 MPa) and ultimate tensile strength (from 976 MPa to 1115 MPa), but declined the elongation (from 3.11% to 2.46%). When the heat treatment temperature rose to 800 °C, the size of σ phase increased. In addition, the L12 phase transformed into the rod-like AlNi-rich B2 phase precipitated in the FCC matrix. The yield strength and ultimate tensile strength were similar to those of the as-deposited sample, but elongation increased by 176%. For heat treatment at 1000 °C case, σ phase dissolved in B2 matrix and the rod-like B2 precipitations significantly coarsened, which softened the alloy. The hardness (308 HV) and yield strength (542 MPa) declined markedly, but the elongation (14.19%) greatly improved. This work shines new insights on the fabrication of Al–Co–Cr–Fe–Ni HEA with controllable microstructure and excellent mechanical properties via a combined process of CCW-AAM and subsequent heat treatment.

Keywords

Arc additive manufacturingCombined cable wireHigh-entropy alloyHeat treatmentMicrostructureMechanical properties

基地概况 仪器设备 基地动态 科研项目 学术成果 产学研协同 国际合作 人才培养 激光研究院 人才招聘 联系我们

联系人:蔡老师  联系电话:13868860852  Email:caiyan2040@163.com

联系地址:浙江省温州茶山高教园区温州大学科技综合大楼15楼  邮编325035 

版权所有 © 温州大学激光基地  技术支持:捷点科技